A variant of inductive counting
نویسندگان
چکیده
منابع مشابه
Inductive Counting below LOGSPACE
We apply the inductive counting technique to nondetermin-istic branching programs and prove that complementation on this model can be done without increasing the width of the branching programs too much. This shows that for an arbitrary space bound s(n), the class of languages accepted by nonuniform nondeterministic O(s(n)) space bounded Turing machines is closed under complementation. As a con...
متن کاملInductive Counting below LOGSPACECarsten
Electronic copies of technical reports are available: Via FTP: URL ftp://ftp.informatik.uni-trier.de/pub/Users-Root/reports Via WWW: URL http://www.informatik.uni-trier.de/Reports/Current.html Via email: Send a mail to [email protected], subject ’HELP’, for detailed instructions Printed copies: Trierer Forschungsberichte Fachbereich IV Mathematik / Informatik Universitat Trier ..
متن کاملInductive Counting for Width-Restricted Branching Programs
As an application of the inductive counting technique to a circuit-like model, we prove that complementation on nondeterministic branching programs can be done without increasing the width too much. A consequence of this result is that the class of languages recognized by a generalization of nonuniform nite automata (Barrington (1989)) to non-constant space is closed under complement.
متن کاملTwo Applications of Inductive Counting for Complementation Problems
Following the recent independent proofs of Immerman [SLAM J. Comput., 17 (1988), pp. 935-938] and Szelepcs6nyi [Bull. European Assoc. Theoret. Comput. Sci., 33 (1987), pp. 96-100] that nondeterministic space-bounded complexity classes are closed under complementation, two further applications of the inductive counting technique are developed. First, an errorless probabilistic algorithm for the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 2000
ISSN: 0304-3975
DOI: 10.1016/s0304-3975(99)00338-2